Aniq fanlar

ОБ ОДНОЗНАЧНОЙ РАЗРЕШИМОСТИ МНОГОМЕРНОЙ ЗАДАЧИ КОЛЕБАНИЙ ПЛАСТИН С ДРОБНЫМИ ОПЕРАТОРАМИ МИЛЛЕРА–РОССА, В СЛУЧАЕ С ЗАДЕЛАННЫМИ И СВОБОДНО ЗАКРЕПЛЕННЫМИ УСЛОВИЯМИ В КЛАССАХ СОБОЛЕВА

high–order partial differential equation, initial–boundary value problem, fractional time derivative, eigenvalues, eigenfunctions, completeness, spectral method, existence, uniqueness, series.

Authors

  • Ш. Г. Касимов Национальный университет Узбекистана имени Мирзо Улугбека, Ташкент, Uzbekistan
  • Д. К. Реймбаева Нукусский государственный педагогический институт имени Ажинияза, Нукус, Uzbekistan

The paper proves the existence and uniqueness theorem for the solution of the problem of plate
vibrations with fractional Miller–Ross operators, in the case of fixed and freely fixed conditions in
Sobolev classes. The solution of the problem under consideration is constructed as the sum of a
series according to the system of eigenfunctions of a multidimensional spectral problem, for which
its eigenvalues are found as the roots of the transcendental equation and the corresponding system
of eigenfunctions is constructed. It is shown that this system of eigenfunctions is complete and forms
a Riesz basis in Sobolev spaces. Based on the completeness of the system of eigenfunctions, solutions
to the initial boundary value problem are obtained.